

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

1

Stairway to AI: Ease the Engagement of Low-Tech users to the AI-on-Demand

platform through AI, H2020

Benchmarking software-2nd version

Deliverable information

Deliverable number D6.2

WP number and title WP6 - Vertical Matchmaking and hardware marketplace

Lead beneficiary BCA

Dissemination level Public

Due date 30th April 2023

Actual date of delivery 3rd May 2023

Author(s) Miguel de Prado (BCA), Jean Marc Bonnefous (BCA), Jagyan Prasad

Mahapatro (HUA), Hamdi Bouchech (HUA)

Ref. Ares(2023)3095478 - 03/05/2023

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

2

Document Control Sheet
Version Date Summary of changes Author(s)

0.1 15/07/2022 Initial draft of document Miguel de Prado (BCA)

0.2 22/07/2022 First version of deliverable completed Miguel de Prado (BCA)

0.3 29/08/2022 Internal review completed Michela Milano

(UNIBO), Gabriel

Gonzalez (Insight)

0.4 23/09/2022 Answers to reviewer’s comments added Miguel de Prado (BCA)

1.0 19/10/2022 Final version of the document Diletta Rizzolo (Unibo)

1.2 31/03/2023 Extension of V1 version Miguel de Prado (BCA)

1.4 04/04/2023 Addition of HUA SW and HW Jagyan Mahapatro

(HUA), Hamdi

Bouchech (HUA)

1.7 02/05/2023 Revision by QA Michela Milano

(UNIBO), Gabriel

Gonzalez (Insight)

2.0 03/05/2023 Final version Miguel de Prado (BCA)

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

3

Table of contents

1. Executive Summary 5

2. Introduction 6

2.1. Purpose and Scope of the document 6

3. LPDNN 7

3.1. LPDNN architecture 7

3.2. Inference engines 8

3.3. Supported HW platforms 9

3.4. Benchmark framework 11

4. Deployment of AI Apps and Benchmark 12

4.1. Deployment of AI Apps 12

4.1.1 LPDNN AI Application (AI App) 12

4.1.2 LPDNN Deployment Package 12

4.2. Benchmark of AI Apps 13

4.2.1. Choose AI App and target HW platform 14

4.2.2. Requirements 14

4.2.3. Download AI App and deployment package 15

4.2.4. Benchmark your AI-App on your target HW 15

5. Benchmark as a Service 17

5.1. BaaS Design 17

5.2. BaaS API 18

5.2.1. CLI 19

5.2.2. HTTP 19

6. Conclusion and future work 19

Bibliography 20

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

4

Acronyms

Acronym Explanation

AI Artificial Intelligence

API Application Programming Interface

BMP Bonseyes Marketplace

DNN Deep Neural Network

LPDNN Low-power Deep Neural Network framework

ML Machine Learning

SW Software

HW Hardware

CPU Central Processing Unit

GPU Graphic Processing Unit

NPU Neural Processing Unit

WP Work Package

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

5

1. Executive Summary

In M20, the 1st version of the Benchmark software framework was released within WP6 Task 6.1 of StairwAI

project. The 1st version of benchmark software framework represented one of the main blocks of the vertical

matchmaking service as it produced the benchmarks across several HW platforms (Task 6.2) that are then

used to train the vertical matchmaking engine (Task 6.3).

This document provides the 2nd version of the Benchmark software framework, including the integration of

a new SW inference engine and HW platform from Huawei into LPDNN. Besides, this deliverable also provides

a large step towards achieving MS10 for the integration of the Benchmark as a Service into the AI-on-demand

platform.

This document is built incrementally on top of 1st version of the Benchmark software framework deliverable,

making the document self-contained. We add and highlight the new features and content of the Benchmark

software framework 2nd that have been added with respect to the 1st.

Section 2 provides a general introduction of the WP and summarize the scope and contributions of this

deliverable.

Section 3 introduces LPDNN: the inference framework that has been used and extended to create a

benchmark framework for heterogeneous HW platforms. First, LPDNN’s architecture is detailed, explaining

the different components that make it an interoperable framework. Next, we introduce the different

inference engines that LPDNN supports, which increase the portability and optimisation of neural networks

across HW platforms. Then, we describe the support for HW platforms and those platforms that have been

already integrated.

Section 4 starts by explaining the elements that are used to deploy AI Applications on HW platforms. Then,

the benchmark flow is explained by showcasing the execution of an AI Application and the obtention of a

benchmark.

Section 5 introduces the design of the Benchmark as a Service (WP2) out of the Benchmarking software

framework, increasing its scope and usability as well as its integration into the AI-on-demand platform.

Lastly, Section 6 elaborates the conclusions.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

6

2. Introduction

WP6 has the main objective of building a Vertical Matchmaking engine that matches AI algorithms and HW

resources to optimise the deployment of services and increase their efficiency.

As such, one of the main objectives of WP6 is to develop benchmark software framework/service suitable for

selected machine learning models and hardware, including CPU (Intel x86, Arm Cortex-A5x, Risc-V), GPGPU

(NVIDIA, etc), and NPU (HUA, etc) accelerated platforms. The benchmark software framework will be used

in Task 6.2 to produce the benchmarks and create a profiling dataset that can be used in Task 6.3 to train the

Vertical Matchmaking engine’s algorithms.

In this document, we propose LPDNN framework as the benchmark software framework. LPDNN framework

was developed during the H2020 Bonseyes project (Prado, Miguel De, et al) and has been largely extended

to provide a structed benchmarking layer to analyze the execution of AI Applications, particularly DNNs, on

a variety of heterogeneous platforms. This layer, on top of LPDNN, adheres to the following design principles:

❑ Industry-driven Research:

➢ Input requirements from SMEs wanting to use AI solutions

➢ Able to deploy AI solutions on edge devices (low-power, low-carbon footprint)

❑ Structured benchmarking workflow:

➢ Availability of anchors within the deployment framework to evaluate the metrics truthfully

➢ Optimised deployment (value added to research and industry)

➢ Extensive documentation & Support (user friendly for SMEs)

➢ Defined interfaces (standarization)

➢ Easy to replicate (reproducibility)

➢ Create trust & community

Taking the previous design principles, the main contributions of the benchmark software framework are the

following:

➢ Introduction of LPDNN as an inference framework.

➢ Integration into LPDNN of four inference engines to benchmark CPU, GPU and NPU platforms.

➢ Integration into LPDNN of four HW platforms and update of another four available platforms to

the latest SW release.

➢ Creation of the benchmarking layer within LPDNN, containing a variety of static and dynamic

metrics.

➢ Design of the benchmarking framework as Service that will be used by external users and

interoperable with the AI-on-demand platform.

2.1. Purpose and Scope of the document

Deliverable D6.2 is a Demonstrator, i.e., it introduces the second and final version of the Benchmark software

framework.

https://dl.acm.org/doi/abs/10.1145/3403572

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

7

3. LPDNN
LPDNN, which stands for Low-Power Deep Neural Network, is a deployment framework that provides the

tools and capabilities to generate portable and efficient implementations of DNNs. The main goal of LPDNN

is to provide a set of AI applications for deep learning tasks, e.g., object detection, image classification, speech

recognition, which can be deployed and optimised across heterogeneous platforms, e.g., CPU, GPU, FPGA,

NPU.

Figure 1 LPDNN AI classes

Figure 2 LPDNN overview

3.1. LPDNN architecture

One of the main issues of deep learning systems is the hardship to replicate results across different systems.

To solve this issue, LPDNN features a full development flow for deep learning solutions on embedded devices

by providing platform support, sample models, optimisation tools, integration of external libraries and

benchmarking. LPDNN’s full development flow makes the AI solution reliable and easy to replicate across

systems.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

8

Figure 3 LPDNN full stack

AI applications are the result of LPDNN’s optimisation process and the higher level of abstraction for the

deployment of DNNs on a target platform. They contain all the necessary elements or modules for the

execution of a DNN. An AI application is the optimised representation of a DNN model to be efficiently

executed on a target embedded device. An AI application contains all the necessary elements or modules

for the execution of a DNN:

• Pre-processing: Step to prepare, normalize or convert the input data into the required input that is

expected by the DNN.

• DNN inference: Forward-pass of the neural network. The execution is taken care of by an inference

engine.

• Post-processing: Conversion of the neural network’s output into structured and human-readable

information.

Next, we detail LPDNN’s architecture by further describing the concept of LPDNN ‘s inference engines and

the support for heterogeneous platforms.

3.2. Inference engines

AI applications contain a hierarchical but flexible architecture that allows new modules to be integrated

within the LPDNN framework through an extendable and straightforward API. For instance, LPDNN supports

the integration of 3rd-party self-contained inference engines to perform DNN inference. Initially, LPDNN only

supported:

• LNE: LPDNN Native Engine (LNE) allows the execution of DNNs across arm-based and x86 CPUs as

well as on Nvidia-based GPUs.

https://arxiv.org/abs/1901.05049

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

9

During the development of the 1st version of the Benchmark software framework in the Stairwai project, the

following inference engines have been integrated into LPDNN:

• NCNN: NCNN ports the execution of DNNs on GPU through the Vulkan driver.

• TensorRT: TensorRT accelerates the DNN inference on Nvidia-based GPUs and NPUs.

• ONNXruntime: ONNXruntime enables the direct execution of ONNX models on CPUs and GPUs.

The inclusion of external engines also benefits LPDNN as certain embedded platforms provide their own

specific and optimised framework to deploy DNNs on their hardware.

As part of the 2nd release of the benchmarking software framework, Huawei’s inference engine has also been

integrated. Huawei’s computing hardware fall into the category of platforms with a dedicated inference

engine, called Ascend Computing Language (ACL). ACL provides a collection of C language APIs for users to

develop deep neural network apps ranging from device management and context management to

model/operator loading and execution.

ACL APIs can be called through a third-party framework such as LPDNN to utilize the compute capability of

the Ascend AI Processor. The integration of ACL into LPDNN provides a method for benchmarking AI apps on

Huawei’s platforms against other platforms such as GPUs and CPUs and other inference engines such as

NCNN, ONNXRuntime, etc. with a common framework. Further information can be found here.

More information about how to add a new inference engine in LPDNN can be found at:

• Developer guides: https://bonseyes.gitlab.io/bonseyes-

cli/pages/dev_guides/ai_app_index.html

3.3. Supported HW platforms

One of the main factors for LPDNN’s adoption is performance portability across the wide span of hardware

platforms. LPDNN’s flexible architecture allows the main core to remain small and dependency-free while

additional 3rd party libraries or inference engines are only included when needed and for specific platforms,

notably increasing the portability across systems. Besides, cross-compilation and specific tools are added to

support a wide range of heterogeneous computing platforms such as CPUs, GPUs, NPUs. One of the

objectives of LPDNN is to provide full support for reference platforms by providing:

• Developer Platform Environments (DPEs) to help the user employ a developer platform, including

OS images, drivers, and cross-compilation toolchains for several heterogeneous platforms.

• A dockerised and stable environment, which increases the reliability by encouraging the replication

of results across platforms and environments.

• Optimisation tools and computing libraries for a variety of computing embedded platforms that can

be used by LPDNN’s inference engines to accelerate the execution of neural networks.

Originally, the range of embedded platforms that were supported within LPDNN were the following:

• Raspberry Pi 3b+: Quad-core ARM Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
• Raspberry Pi 4b: Quad-core ARM Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
• Nvidia Jetson Nano: Quad-core ARM Cortex -A57 @ 1.43 GHz & 128-core Nvidia Maxwell GPU

https://github.com/Tencent/ncnn
https://developer.nvidia.com/tensorrt
https://github.com/microsoft/onnxruntime
https://support.huaweicloud.com/intl/en-us/adevg-A800_3000_3010/atlasdevelopment_01_0003.html
https://bonseyes.gitlab.io/bonseyes-cli/pages/dev_guides/ai_app_index.html
https://bonseyes.gitlab.io/bonseyes-cli/pages/dev_guides/ai_app_index.html

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

10

• Nvidia Jetson Xavier: Octa-core ARM v8.2 @ 2.03 GHz & 512-core Nvidia Volta GPU with Tensor
Cores

During the development of the 1st version of the Benchmark software framework in the Stairwai project, we

have employed Bonseyes LPDNN’s platform workflows to integrate new HW platforms and provide a more

heterogeneous set of benchmarks on variety of HW processing cores. The following HW platforms have been

fully integrated:

• Intel NUC: Intel quad-core (TM) i5-7260U CPU @ 3.4 GHz
• iMX8m Nano: Quad-core ARM Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
• STM32 MP1: Dual-core ARM Cortex-A7 cores up to @ 800 MHz

Besides, the following platforms have been upgraded:

• Nvidia Jetson Nano: Update to latest jetpack release JP6.4
• Nvidia Jetson Xavier: Update to latest jetpack release JP6.4
• Raspberry Pi 3b+: Update to latest Ubuntu20 packages
• Raspberry Pi 4b: Update to latest Ubuntu20 packages

As part of the 2nd release of the benchmarking software framework, two new platforms from Huawei have
also been used for deployment:

• Atlas 200 DK (model: 3000): The Atlas 200 DK is a high-performance AI application developer board
that integrates the Ascend 310 AI processor to facilitate quick development and verification. It has
been widely used in scenarios such as developer solution verification, higher education, and scientific
research.

• Atlas 800 Training Server (Model: 9010): The Atlas 800 training server is an AI training server based
on the Intel processors and Huawei Ascend 910 processors. It features ultra-high computing density
and high network bandwidth. The server is widely used in deep learning model development and
training scenarios and is an ideal option for computing-intensive industries, such as smart city,
intelligent healthcare, astronomical exploration, and oil exploration.

Further information can be found here.

Furthermore, BonsAPPs project is currently performing the integration of extra-low-power platforms
containing Micro-controller Units, which can then be leveraged in Stairwai for benchmarking:

• STM32 H7A3: Arm® Cortex®-M7 core @ 480 MHz & 1.4 Mbytes of SRAM

• Greenwaves GAP8: RISC-V core & Octa-core RISC-V (cluster) & 512kB of L2 memory

More information about the HW platforms can be found at:

• User guide: https://bonseyes.gitlab.io/bonseyes-cli/pages/user_guides.html#platform

• Developer guide: https://bonseyes.gitlab.io/bonseyes-

cli/pages/developer_guides.html#platform

Developer platforms can be accessed upon request at https://gitlab.com/bonseyes/platforms/.

https://e.huawei.com/en/products/computing/ascend
https://bonseyes.gitlab.io/bonseyes-cli/pages/user_guides.html#platform
https://bonseyes.gitlab.io/bonseyes-cli/pages/developer_guides.html#platform
https://bonseyes.gitlab.io/bonseyes-cli/pages/developer_guides.html#platform
https://gitlab.com/bonseyes/platforms/

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

11

3.4. Benchmark framework

LPDNN provides a structed benchmarking layer to analyze the execution of AI Applications on HW platforms.

LPDNN integrates a first analysis of static metrics during the offline compilation of the AI Applications. Metrics

such as FLOPS, model parameters and model storage are obtained. Besides, LPDNN integrates two methods

to benchmark the execution of AI Apps:

• Built-in anchors: C++ anchors are included in LPDNN to measure the latency and memory

consumption of the AI Apps during their executions. Several anchors are included:

o Pre-processing: This anchor measures the latency and memory of a given pre-processor:

▪ Image: cropping, normalization, resize, filtering

▪ Audio: mfcc feature computation

▪ Signal: resizing, filtering

o Inference: This anchor measures the latency and memory spent during the forward pass of

the neural network for a given inference engine.

o Post-processing: This anchor measures the latency and memory spent during the post-

processing of the outputs of the forward pass, e.g., decoding, non-max suppression,

bounding box forming.

o Total execution: This anchor measures the latency and memory spent during the total

execution of the AI App.

• HW resources monitoring: Python script that monitors the HW resources of the system while the

execution of the AI App. Metrics such as CPU/GPU/NPU processor load, peak/average memory

usage, memory bandwidth, temperature, etc.

Overall, these are the following metrics are LPDNN collects:

• Static metrics (not measured on device):

o FLOPs

o Parameters

o Storage

• Dynamic metrics (measured on device):

o Latency

o Throughput

o Average Memory (CPU/GPU)

o Peak Memory (CPU/GPU)

o Memory Bandwidth (CPU/GPU)

o Processor load (CPU/GPU/NPU)

o Power consumption

o Temperature

For more details, please refer to D6.3 submitted in M25.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

12

4. Deployment of AI Apps and Benchmark
In this section, we showcase what elements are needed for deployment and how to execute a benchmark.

4.1. Deployment of AI Apps

To be able to execute AI applications on a hardware platform, two elements are required:

A. An LPDNN AI application:

It defines the class and structure of the AI application, the DNN models’ architecture and weights, its

deployment configuration and the pre- and post-processing that it takes. LPDNN AI applications are platform-

specific, although the same AI application can be executed on different HW platforms as long as the selected

inference engine or backends are supported by the HW platform.

B. An LPDNN Deployment Package:

Collection of tools, executables, libraries, inference engines and backends that allows the actual execution of

the LPDNN AI application. The collection of libraries and binaries that are copied on the target platform for

the execution of the DNN is called a runtime. The runtime dynamically loads an AI application and executes

it based on its defined configuration. LPDNN’s deployment packages are platform specific as they contain the

inferences engines and backends supported by the HW platform.

4.1.1 LPDNN AI Application (AI App)

An LPDNN AI App is composed of the following files:

❖ ai_app_config.json: This file is the main descriptor of an AI App. It defines the AI App’s components

and their type, e.g., image_classification, object_clasification, face_recognition, audio_classification

andsignal_processing, the type of pre- and post-processing as well as the inference engine to use to

execute the DNN model. It also points to the model architecture and weights file.

❖ ai_app.yml: This file defines the AI App metadata and license type. It also This describes the platform,

runtime and challenge that the AI App was initially compiled for. This file is not used by the runtime,

but by other deployment tools.

❖ DNN model: A DNN model describes the model architecture and the trained weights. A DNN model

may come on different forms based on the selected inference engine, e.g., model.json, model.param,

model.bin or model.onnx.

4.1.2 LPDNN Deployment Package

An LPDNN runtime, contained within a deployment package, is the collection of binaries and libraries that

are copied to the target platform for the execution of DNNs. Runtimes are composed of the following files:

❖ Binaries: This folder contains the set of executables to start an AI App manually through different

interfaces, e.g., ai-app-cli, ai-app-cli.py, http-worker.

❖ Libraries: This folder contains the set of dynamic and static libraries that are included in LPDNN for a

target developer platform. It includes the inference engines, the pre- and post-processing routines,

backends, etc.

❖ Solutions: This folder contains the bash scripts to start up an AI App automatically or remotely.

❖ package.yml: This file defines the runtime name.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

13

❖ runtime.yml: This file contains metadata for the runtime and it is used to automatically start an AI

App using the Bonseyes tools.

❖ engines.yml: This file describes the available engines for within the runtime.

4.2. Benchmark of AI Apps

Fig. 4 shows the Bonseyes Benchmark User Journey to benchmark an AI Application on a computing

platform.

Figure 4 Benchmark User Journey

More details are given in Fig.5, which illustrates the and process a user needs to go through to benchmark

an AI Application. The process is divided into the following steps:

1. Choose AI App and target HW platform from the Catalog.

2. Follow the requirements step to be compliant with the process and the tools.

3. Download an AI App and a deployment package.

4. Benchmark your AI App on your target HW.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

14

Figure 5 Benchmark procedure

Next, each of these steps will be explained in detail.

4.2.1. Choose AI App and target HW platform

The user needs to choose a target platform and AI App from the Marketplace’s Catalog.

Figure 6 Bonseyes Marketplace Catalog

If the user would like to create its own application, detailed documentation is provided to generate a new

one at Bonseyes docs for AI-App generation.

4.2.2. Requirements

To be able to execute AI applications on a hardware platform, the following steps need to have been

performed:

1. Setup the local environment as explained in Bonseyes Prerequisites doc.

2. Set up the target hardware as explained in Setup platform section of Bonseyes’ doc and have the

${platformName_src} ${platformName_build} and ${platformName_config} folders in your machine.

3. Install python packages in the target board as explained in the Packages’s section.

https://beta.bonseyes.com/
https://bonseyes.gitlab.io/bonseyes-cli/pages/developer_guides.html#ai-app
https://bonseyes.gitlab.io/bonseyes-cli/pages/setup.html
https://bonseyes.gitlab.io/bonseyes-cli/pages/user_guides/platform_index.html#setupplatform
https://bonseyes.gitlab.io/bonseyes-cli/pages/user_guides/ai_asset_index.html#python-packages

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

15

Once those steps are completed, change directory to the folder where you built your target platform during

the Setup platform section, e.g., my-bonseyes-platform.

4.2.3. Download AI App and deployment package

New AI App can be generated by following the Bonseyes docs for AI-App generation. Already built AI Apps

can also be obtained from the Bonseyes Marketplace’s catalogue. To download an AI-App from the

Marketplace’s catalogue execute the following command (replace ${ai_app} by the name you would like to

give to your AI-App):

 bonseyes marketplace download-ai-app --output-dir ${ai_app}

A dialog will prompts asking you to choose the AI-App you would like to download and he ai app will be

downloaded in the directory ${ai_app} as shown in Figure 7. The AI App will contain a series of files, as

explained in Section 4.1.1.

Figure 7 AI-App download

LPDNN’s deployment packages are currently available at https://gitlab.com/bonseyes/artifacts/deployment-

packages/-/packages and can be accessed under request. Once you obtained a platform-specific deployment

package, copy your LPDNN’s deployment package in the same folder as the target platform and the AI-App.

Next, decompress it (change ${deployment_package} by the name of your package):

 cp ${deployment_package}.tar.gz my-bonseyes-platform
 tar -xvf ${deployment_package}.tar.gz

4.2.4. Benchmark your AI-App on your target HW

To benchmark an AI-App, your folder should contain the following elements:

https://bonseyes.gitlab.io/bonseyes-cli/pages/user_guides/platform_index.html#setupplatform
https://bonseyes.gitlab.io/bonseyes-cli/pages/developer_guides.html#ai-app
https://gitlab.com/bonseyes/artifacts/deployment-packages/-/packages
https://gitlab.com/bonseyes/artifacts/deployment-packages/-/packages

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

16

1. ${platformName_config}: target configuration coming from the DPE setup

2. ${deployment_package}: downloaded from Gitlab

3. ${ai_app}: downloaded from the BMP

To benchmark an AI App, you need to execute the following command:

bonseyes ai-app benchmark-analyzer --target-config ${platformName_config} \
 --ai-app ${ai_app} \
 --deployment-package ${deployment_package} \
 --dataset PATH/TO/DATASET_FOLDER \
 [--number 20] \
 [--filename ${FileName}]

For instance, to benchmark a Face Detection Retinaface AI-App for Imagenet on the Jetson Xavier platform

looks like:

 bonseyes ai-app benchmark-analyzer
 --target-config jetson_xav_config \
 --ai-app my-aiapp \
 --deployment-package xav_deployment_package \
 --dataset ../samples \
 --number 10 \
 [--filename benchmark.json]

This call will perform then inferences for Face Detection Retinaface AI-App on the Jetson Xavier platform with

Jetpack 4.6 as follows:

Figure 8 Benchmark with LPDNN

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

17

To store the benchmark in a file, add the –filename option and the metrics will be dumped in the named file

in JSON format. If the file name option is enabled, prediction results will be automatically dump

into results.txt*.

5. Benchmark as a Service
As part of the 2nd release of the benchmarking software framework, we also introduce the Benchmark as-a-

Service (BaaS) design in collaboration with WP2 for broader interoperability with the AI-on-demand platform.

StairwAI aims to enhance the AI-on-demand platform services by employing a service layer that provides,

among others, Vertical Matchmaking. The Benchmarker, a building block of the Vertical Matchmaking, was

not initially considered as a service on its own. Nonetheless, given its maturity, the StairwAI has provided the

means and effort for a closer integration of the BaaS into the AI-on-demand platform.

Partners of WP6 have held coordination meetings with AI4Europe partners to understand the requirements

and dependencies required to interoperate the BaaS into the AI-on-demand platform. Given that the AI-on-

demand platform may contain multiple AI artifacts, e.g., dataset, AI model, or algorithm, the best solution

found was to provide interfaces that define the API to communicate or transfer the content from one

service/database to another. Thus, AI models from the AI-on-demand platform could be benchmarked

through the BaaS from StairwAI. Fig. 9 illustrates the interfaces between the AI-on-demand Platform, the AI

artifacts from AI4EU and the BaaS:

Figure 9 Benchmark as a Service workflow

5.1. BaaS Design

To be able to put in place such a workflow, it was envisioned a service layer wrapping and also extending

the Benchmarking Software framework (middle green block in Fig.9). This would also allow to alleviate some

of the Benchmarking software framework dependencies and be able to benchmark any AI model and format

while still benefiting from LPDNN optimisations. The dockerized service that is proposed is described in Fig.

10 and will allow the following functions:

• Transfer of AI models from the AI-on-demand Platform to the BaaS for benchmarking by providing

CLI or HTTP interfaces.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

18

• Dispatch of requests from the central service to the operative docker containers to benchmark the

AI model on the target platform.

• Check the format and compatibility of the AI model with the available inference engine on the target

platform when the model is received at the docker container. Note that some computing platforms

do not support all inference engines, e.g. RPI does not support TensorRT as it does not have an Nvidia

GPU.

• Benchmark of the AI model on the target platform and return of the results to the end user through

the dispatcher.

Figure 10 Benchmark as a Service implementation

In order to transform the Benchmarking software framework into the BaaS described in Fig. 10, LPDNN will

be released in the form of deployment packages that can be employed within the BaaS workflow for AI model

inference. LPDNN deployment packages will fit into a more abstract and general class for AI model inference,

which also allows to add not supported engines such as TensorFlow Lite and broaden the range of AI model

that can be benchmarked. LPDNN benchmarking layer, explained in Section 3.4, will be adapted to provide

all the available metrics, i.e., static, and dynamic, in a coherent manner for all inference engines. Finally, to

create the BaaS’s docker containers, LPDNN’s DPE, explained in Section 3.3, will be used to include all the

environment, libraries, and dependencies to set up and deploy AI models on the platform.

More details and efforts will be put into the integration and deployment BaaS with the AI-on-demand

platform as part of T2.5 during the last months of the StairwAI project.

5.2. BaaS API

In this section, we introduce the API that will be available for the BaaS once it’s deployed. We provide two

types of interfaces:

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

19

5.2.1. CLI

Command Line Interface (CLI) allows to a given user to query the BaaS locally through the command line,

allowing for easy usage and testing. The usage of the BaaS would be as follows:

Usage: bonseyes_baas_cli

 --model-path <local_model_path>

 --engine {tf, tflite, onnx, tensorrt, lpdnn}

 --profile (specifies versions of dependencies etc.)

 --platform {x86, raspberrypi, jetson}
 [--device {cpu, gpu}]

The Bonseyes_baas_cli will connect to the dispatcher, which based on the platform and profile, will redirect

the query to the right docker container. The docker container will then take the model-path and engine to

perform the benchmark either on the CPU or GPU as specified by the device parameter.

5.2.2. HTTP

The HTTP interface allows to a given user to query the BaaS remotely without direct access to where the BaaS

is deployed (only URL needed). The usage of the BaaS would be as follows:

<url>/bonseyes_baas/<platform>/<profile>/<engine>?device=<cpu|gpu>
 <platform>: {x86, raspberrypi, jetson}

 <engine>: {tf, tflite, onnx, tensorrt, lpdnn}

For a user to be able to post a query, the model should be in a binary body of the request as follows:

curl --request POST --data-binary @<path_to_model_file>
<url>/bonseyes_baas/<platform>/<profile>/<engine>?device=<cpu|gpu>

The BaaS internal process will perform in the exact same way as explained for CLI.

6. Conclusion and future work
This document has presented the second and final release of the Benchmark software framework proposed

within WP6 Task 6.1 of StairwAI project. The document describes how LPDNN inference framework has been

used and extended to accommodate a benchmark layer that allows to profile AI Applications on a range of

heterogeneous HW platforms. The deployment and benchmark of AI Applications has been showcased,

illustrating the flow and commands that a user need to execute to benchmark an AI Application.

In addition, we have presented the design of the Benchmark as-a-Service, extending the Benchmark software

framework’s scope to increase its reusability and interoperability with the AI-on-demand platform and allow

the benchmark of AI-on-demand’s assets. This represents a large step towards achieving MS10 for integrating

the services into the AI-on-demand platform.

D6.2 Benchmarking software-2nd version H2020 GA 101017142

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017142

20

Bibliography

1. Prado, Miguel De, et al. "Bonseyes AI pipeline—Bringing AI to you: End-to-end integration of data,

algorithms, and deployment tools." ACM Transactions on Internet of Things 1.4 (2020): 1-25.

