
 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

1 
 

 

 

Stairway to AI: Ease the Engagement of Low-Tech users to the AI-on-Demand 

platform through AI, H2020 

 

 

Benchmarking results-2nd 

 

Deliverable information 

Deliverable number D6.4 

WP number and title WP6 - Vertical Matchmaking and hardware marketplace 

Lead beneficiary BCA 

Dissemination level Public 

Due date 30 June 2023 

Actual date of delivery 26 June 2023 

Author(s) Miguel de Prado (BCA), Andrea Borghesi (Unibo), Carmine Di Santi 

(Unibo), Jacopo Carletti (INFN), Hamdi Bouchech (HUA), Jagyan 

Prasad (HUA), Marco Rorro (EGI) 

  

Ref. Ares(2023)4409384 - 26/06/2023



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

2 
 

 

Document Control Sheet 
Version Date Summary of changes Author(s) 

0.1 11/01/2023 Initial draft of document Miguel de Prado (BCA) 

0.3 26/01/2023 First draft complete Miguel de Prado (BCA), 

Andrea Borghesi 

(Unibo), Jacopo Carletti 

(INFN) 

0.7 10/02/2023 Corrections after QA review Miguel de Prado (BCA) 

1.0 13/02/2023 Final document Miguel de Prado (BCA) 

1.3 25/05/2023 Additions to V1 version Miguel de Prado (BCA), 

Andrea Borghesi 

(Unibo), Carmine Di 

Santi (Unibo), Jacopo 

Carletti (INFN), Hamdi 

Bouchech (HUA), 

Jagyan Prasad (HUA). 

Marco Rorro (EGI) 

1.7 26/06/2023 Corrections after QA review Miguel de Prado (BCA) 

2.0 26/06/2023 Final document Miguel de Prado (BCA) 

 

  



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

3 
 

Table of contents 

 
1. Executive Summary ................................................................................................................................... 6 

2. Introduction ............................................................................................................................................... 7 

2.1. Purpose and Scope of the document ................................................................................................ 7 

3. Benchmark results (by StairwAI) ............................................................................................................... 8 

3.1. Benchmark Software Framework (LPDNN) ....................................................................................... 8 

3.1.1. Scope ............................................................................................................................................. 8 

3.1.2. Metrics ........................................................................................................................................... 8 

3.1.3. Pros/Cons ..................................................................................................................................... 11 

3.2. Benchmark online optimization algorithms (Energy domain) ......................................................... 11 

3.2.1. Scope ........................................................................................................................................... 11 

3.2.2. Metrics ......................................................................................................................................... 11 

3.2.3. Pros/Cons ..................................................................................................................................... 12 

3.3. Benchmark complex, multi-parameter algorithms (Transprecision Computing Domain) .............. 12 

3.3.1. Scope ........................................................................................................................................... 13 

3.3.2. Metrics ......................................................................................................................................... 14 

3.3.3. Pros/Cons ..................................................................................................................................... 14 

4. Survey of external benchmarks ............................................................................................................... 15 

4.1. AI Benchmark................................................................................................................................... 15 

4.1.1. Scope ........................................................................................................................................... 15 

4.1.2. Metrics ......................................................................................................................................... 15 

4.1.3. Pros/Cons ..................................................................................................................................... 17 

4.2. MLPerf ............................................................................................................................................. 18 

4.2.1. Scope ........................................................................................................................................... 18 

Training .................................................................................................................................................... 18 

Inference .................................................................................................................................................. 18 

4.2.2. Metrics ......................................................................................................................................... 19 

Training .................................................................................................................................................... 19 

Inference .................................................................................................................................................. 20 

Inference Datacenter ............................................................................................................................... 21 

Inference Mobile ..................................................................................................................................... 21 

4.2.3. Pros/Cons ..................................................................................................................................... 22 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

4 
 

4.3. AIBench ............................................................................................................................................ 22 

4.3.1. Scope ........................................................................................................................................... 22 

4.3.2. Metrics ......................................................................................................................................... 23 

4.3.3. Pros/Cons ..................................................................................................................................... 24 

4.4. OpenML CC-18 ................................................................................................................................. 24 

4.4.1. Scope ........................................................................................................................................... 24 

4.4.2. Metrics ......................................................................................................................................... 24 

4.4.3. Pros/Cons ..................................................................................................................................... 25 

4.5. DataPerf ........................................................................................................................................... 26 

4.5.1. Scope ........................................................................................................................................... 26 

4.5.2. Metrics ......................................................................................................................................... 26 

DataPerf Benchmark type ....................................................................................................................... 26 

4.5.3. Pros/Cons ..................................................................................................................................... 27 

5. Discussion and integration ...................................................................................................................... 28 

5.1. Benchmarks discussion .................................................................................................................... 28 

5.2. Benchmark Integration .................................................................................................................... 29 

5.2.1. Benchmark as a Service ............................................................................................................... 30 

5.2.2. Metadata describing the benchmarking output ......................................................................... 31 

5.2.3. Data exchange Service ................................................................................................................. 31 

5.2.3.1. APIs .......................................................................................................................................... 32 

5.2.4. Alignment with AI-on-demand platform ..................................................................................... 33 

6. Conclusion and future work .................................................................................................................... 34 

7. Appendix .................................................................................................................................................. 35 

7.1. Metadata example .......................................................................................................................... 35 

 

 

 

 

 

  



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

5 
 

 

Acronyms 

Acronym Explanation 

AI Artificial Intelligence 

API Application Programming Interface 

BMP Bonseyes Marketplace 

CPU Central Processing Unit 

DNN Deep Neural Network 

GPU Graphical Processing Unit 

HW  Hardware  

LPDNN Low-power Deep Neural Network framework 

ML Machine Learning 

NPU Neural Processing Unit 

SW  Software  

WP Work Package 

  



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

6 
 

1. Executive Summary 
 

The benchmark results are the outcome of benchmark software framework executed across multiple 

heterogenous platforms, which are then used to train the vertical matchmaking engine (Task 6.3). 

In M25, the 1st version of the Benchmark Results was released within WP6 Task 6.2 of StairwAI project. The 
1st version of benchmark results represented one of the main contributions from WP6 to train the 1st version 
of the vertical matchmaking engine (Task 6.3).  
 

This document provides the 2nd version of the Benchmark Results, including the integration of Huawei’s 
benchmarks that led the integration of Huawei’s HW and SW into LPDNN (Benchmark Software Framework) 
within D6.2. Besides, this deliverable also provides a large step towards achieving MS10 for the integration 
of the Benchmark Results into the AI-on-demand platform by providing a database that can be accessed 
through the AI-on-demand API (Section 5). 
 
This document is built incrementally on top of 1st version of the Benchmark Results deliverable, making the 
document self-contained. We add and highlight the new features and content of the Benchmark Results 2nd 
that have been added with respect to the 1st.  
 
Section 2 introduces the deliverable, providing the context and the contributions.  

Section 3 presents the results obtained from the benchmark software framework while Section 4 gives a 

summary of external benchmarks that are commonly used by researchers to push the limits of the fields.  

In Section 5, we provide an analysis of these benchmarks and compare them against the ones collected within 

the project. We also propose a series of operational steps to integrate the benchmarking framework with 

StairwAI platform and with the AI-on-demand platform as well.  

Lastly, Section 6 elaborates the conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

7 
 

2. Introduction 
As the computational capacity of embedded devices grows, they become more capable of performing 

sophisticated tasks, including those considered artificial intelligence (AI). Since the advent of AI for computer 

vision and speech recognition tasks, training of AI models has been performed using machine learning 

algorithms, with a large number of open-source datasets created by researchers. Such datasets provide an 

opportunity to develop, train and test AI algorithms on devices that range from the Cloud to the Edge. 

A significant concern for AI engineers during the deployment of AI Algorithms is maximizing the system's 

performance in terms of overall latency, quality of solution, power, and space. The evaluation of AI 

Algorithms is often based on how well they perform on restricted public benchmark problems. These 

benchmarks give an informative indication of how well a given algorithm will perform on some given tested 

systems. However, AI Algorithms are often deployed on systems with rather different characteristics. As a 

result, the performance can vary widely according to the system on which they are deployed. Therefore, it is 

vital to have a large variety of benchmarks across multiple heterogeneous platforms to understand an AI 

Algorithm’s behaviour comprehensively. 

Taking these principles, the main contributions of this deliverable are the following: 

 Presentation of benchmark results obtained by StairwAI’s benchmark frameworks across 

heterogeneous platforms, including CPUs, GPUs, and NPUs. 

 Survey of external benchmarks, presenting their scope, metrics, pros, and cons. 

 Discussion about the results obtained towards creating a Vertical Matchmaking Engine and 

alignment with AI-on-demand platform. 

The key additions with respect to the 1st version of the benchmarking results (D6.3) are the following:  

 The addition of new datasets generated through the internal benchmarks by the project’s partners. 

 The identification of a common format to describe the output of the benchmarking results to make 

them usable by the vertical matchmaking engine. 

 The creation of a data exchange service (deployed in the StairwAI platform) that acts as a connector 

between the benchmarking service and the vertical matchmaking service. 

 The definition of a clear set of APIs for all services, to allow their integration into the AI-on-Demand. 

2.1. Purpose and Scope of the document 

WP6 has the main objective of building a Vertical Matchmaking engine that matches AI algorithms and HW 
resources to optimise the deployment of services and increase their efficiency. In the deliverable D6.2 
(Benchmarking software-2nd version M28), the benchmark software framework was introduced, which had 
the main objectives of developing a software tool to benchmark machine learning models and hardware, 
including CPU (Intel x86, Arm Cortex-A5x, Risc-V), GPGPU (NVIDIA, etc), and NPU (HUA, etc) platforms.  
 
Deliverable D6.4 is a Report, i.e., it introduces the 2nd version of the Benchmark Results collected by the 
benchmark software framework. Further, we offer the results of a survey we conducted to investigate 
existing benchmarking data, especially to understand whether it could be useful for the Vertical 
Matchmaking Engine (D6.5 in M30). Finally, we summarize the key insights gathered and provide some 
observations. We will explicitly focus the discussion on the aspects most relevant for the downstream task in 
WP6, namely the vertical matchmaking engine – which will exploit the benchmarking data to reach its 
goals. In addition, we also provide some key insights about the alignment with the AI-on-demand platform. 
 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

8 
 

3. Benchmark results (by StairwAI) 
3.1. Benchmark Software Framework (LPDNN) 

3.1.1. Scope 

LPDNN is the deployment framework that was introduced in D6.1 and D6.2 as the benchmark software 

framework developed during T6.1. The LPDNN framework was initially developed during the H2020 Bonseyes 

project (Prado, Miguel De, et al) and has been largely extended in StairwAI to provide a structured 

benchmarking layer to analyze the execution of AI Applications on a variety of heterogeneous platforms. This 

layer, on top of LPDNN, adheres to the following design principles: 

 Industry-driven Research: 

o Input requirements from SMEs wanting to use AI solutions. 

o Able to deploy AI solutions on edge devices (low-power, low-carbon footprint). 

  Structured benchmarking workflow: 

o Availability of anchors within the deployment framework to evaluate the metrics truthfully. 

o Optimised deployment (value added to research and industry). 

o Extensive documentation & Support (user friendly for SMEs). 

o Defined interfaces (standardization). 

o Easy to replicate (reproducibility). 

o Create trust & community. 

LPDNN provides the tools and capabilities to generate portable and efficient AI applications, which can be 

deployed and optimised across heterogeneous platforms, e.g., CPU, GPU, FPGA, NPU (ASIC). LPDNN features 

a full development flow for AI solutions on hardware devices by providing platform support, sample models, 

optimisation tools, integration of external libraries, and benchmarking.  

LPDNN’s full development flow makes the AI solution reliable and easy to replicate, increasing the 

portability and fairness across the wide span of hardware platforms. LPDNN’s flexible architecture allows 

the main core to remain small and dependency-free. At the same time, additional 3rd party libraries or 

inference engines are only included when needed and for specific platforms, notably increasing the 

portability across systems. Thereby, different systems can be benchmarked with the same benchmarking 

code and fairly compared. 

The collected dataset using LPDNN across heterogenous platforms has been open sourced at: 

https://gitlab.com/bonseyes/bonseyes-benchmarks/-/tree/master?ref_type=heads. 

Over 3000 implementations have been benchmarked across 10 different HW platforms, allowing to train the 

Vertical Matchmaking engine (to be reported in D6.5 in M30). 

For more details about LPDNN, please refer to D6.2. 

3.1.2. Metrics 

LPDNN provides a first analysis of static metrics during the offline compilation of the AI Applications. The 

offline metrics are the following: 

https://dl.acm.org/doi/abs/10.1145/3403572
https://gitlab.com/bonseyes/bonseyes-benchmarks/-/tree/master?ref_type=heads


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

9 
 

 AI_TASK: Task or class that the AI Model does, e.g., image classification.  

 MODEL_VERSION: Specific version of the AI Model, e.g., different backbone.  

 INPUT_TILE: Input size that the neural network takes.  

 PLATFORM: HW platform where the AI Model is deployed.  

 ENGINE: Inference engine that executes the AI Model.  

 PROCESSOR: Processor where the AI Model is executed.  

 PRECISION: Precision, e.g., floating point, of the data.  

 GFLOP: Giga Floating Point OPerations that the AI Model’s inference performs 

 #PARAMS: Number of parameters (weights) that the AI Model contains.  

 STORAGE: Size on disk of #PARAMS.  

During the execution of the AI Applications, LPDNN measures the following metrics: 

 QUALITY_METRIC: Quality metric, e.g., accuracy, mean square error.  

 QUALITY_VALUE: Value of the quality metric.  

 PREPROCESSING_TIME: Time spent on pre-processing the data.  

 INFERENCE_TIME: Time spent on the forward pass of the neural network (NN).  

 POSTPROCESSING_TIME: Time spent on post-processing the results of the NN.  

 LATENCY: Addition of pre/post-processing+ inference times.  

 THROUGHPUT: Number of executions per second. Inverse of latency.  

 DMIPS: Dhrystone Million Instructions per Second.  

 CPU_MEM: Average CPU memory allocated over the execution.  

 CPU_MEM_PEAK: Peak CPU memory allocated over the execution.  

 GPU_MEM: Average GPU memory allocated over the execution.  

 GPU_MEM_PEAK: Peak GPU memory allocated over the execution.  

 MEMORY_BANDWIDTH: Average Memory bandwidth taken.  

 MEMORY_BANDWIDTH_PEAK: Peak Memory bandwidth taken.  

 CPU_LOAD: Average load of the CPU over the execution.  

 GPU_LOAD: Average load of the GPU over the execution.  

 NPU_LOAD: Average load of the NPU over the execution.  

 CPU_TEMP: Average temperature of the CPU over the execution.  

 GPU_TEMP: Average temperature of the GPU over the execution.  

 POWER_CONSUMPTION: Power consumption over the execution.  

 ENERGY_EFFICIENCY: Energy efficiency over the execution. 

For more detail about how these metrics are collected, please refer to D6.2. 

Among these metrics, it is worth noting the different supported platforms, inference engines and AI models: 

Platforms: 

 Raspberry Pi 3b+: Quad-core ARM Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz 
 Raspberry Pi 4b: Quad-core ARM Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz 
 Nvidia Jetson Nano: Quad-core ARM Cortex -A57 @ 1.43 GHz & 128-core Nvidia Maxwell GPU 
 Nvidia Jetson Xavier: Octa-core ARM v8.2 @ 2.03 GHz & 512-core Nvidia Volta GPU with Tensor 

Cores 
 Intel NUC: Intel quad-core (TM) i5-7260U CPU @ 3.4 GHz 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

10 
 

 iMX8m Nano: Quad-core ARM Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz 
 STM32 MP1: Dual-core ARM Cortex-A7 cores up to @ 800 MHz 
 HPC: General x86 Intel or AMD CPU cores and NVIDIAGPUs 

As part of the 2nd release of the benchmarking results, Huawei’s platforms have also been integrated and 

benchmarked: 

 Atlas 200 DK (model: 3000): High-performance developer board that integrates the Ascend 310 AI 
processor. It has been widely used in scenarios such as developer solution verification, higher 
education, and scientific research. 

 Atlas 800 Training Server (Model: 9010): AI training server based on the Intel processors and Huawei Ascend 
910 processors. It features ultra-high computing density and high network bandwidth. The server is widely 
used in deep learning model development and training scenarios and is an ideal option for computing-intensive 
industries, such as smart city, intelligent healthcare, astronomical exploration, and oil exploration. 

Inference engines:  

 LNE: LPDNN Native Engine (LNE) allows the execution of DNNs across arm-based and x86 CPUs as 

well as on NVIDIA-based GPUs. 

 NCNN: NCNN ports the execution of DNNs on GPU through the Vulkan driver. 

 TensorRT: TensorRT accelerates the DNN inference on NVIDIA-based GPUs and NPUs. 

 ONNXruntime: ONNXruntime enables the direct execution of ONNX models on CPUs and GPUs. 

As part of the 2nd release of the benchmarking results, Huawei’s inference engine has also been integrated 

and benchmarked: 

 ACL: AscendCL(ACL) enables the execution of DNNs on arm-based and x86 Huawei Ascend hardware. 

 

AI Models: 

 face-landmarks-detection-3ddfa 

 body-pose-openpifpaf 

 face-landmarks-detection-retinaface 

 face-recognition-insightface-mobilefacenet 

 incar-object-detection-nanodet 

 age-gender-insightface 

 emotion-classic-light-112x96 

 eyegaze-rankgaze 

 headpose-rankpose 

 imagenet-alexnet 

 imagenet-googlenet 

 imagenet-efficientb0 

 imagenet-squeezenet 

 imagenet-mobilenet 

 imagenet-mobilenet-v2 

 imagenet-mobilenet-v3 

 imagenet-resnet-resnet18 

https://arxiv.org/abs/1901.05049
https://github.com/Tencent/ncnn
https://developer.nvidia.com/tensorrt
https://github.com/microsoft/onnxruntime
https://support.huaweicloud.com/intl/en-us/adevg-A800_3000_3010/atlasdevelopment_01_0003.html


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

11 
 

 imagenet-resnet-resnet32 

 imagenet-resnet-resnet50 

 coco-nanodet 

3.1.3. Pros/Cons 

PROS 

 Fair comparison across SW/HW vendors: 

o Integration of SW inference engines from several vendors on the same codebase 

o Execution on heterogeneous systems (CPU, GPU, NPU) 

 Variety on Model deployment:  

o Multiple flavours of models and backbones with several input sizes 

o Deployment with different inference engines and data types (fp32, fp16, int8)  

 Real Industrial benchmark  

o Measures real latency of AI App with pre- & post-processing  

o Monitors system during benchmarking 

o Extensive number of metrics 

CONS 

 Mostly focused on deep learning model for computer vision  

 Relatively small amount of data 

 

3.2. Benchmark online optimization algorithms (Energy domain)  

3.2.1. Scope  

Online algorithms configuration for energy systems is a complex domain area characterized by uncertainty, 
e.g., renewable energy production, demand fluctuation, tight Hardware (HW) and real-time constraints. An 
online algorithm should be able to calculate the amount of energy that must be produced by the energy 
system to meet the required load, minimizing the total energy cost over the daily time horizon and by 
considering the uncertainty. This is a typical real-world problem with real time constraints.  
 

Selecting the optimal HW configuration for a given set of tight constraints on solution time and quality over 
multiple and diverse data instances (e.g., the specific details of the energy system) for a given online 
algorithm is a complex problem. Moreover, each algorithm is characterized by a configurable parameter that 
further complicates this task.  
 

The dataset has been collected using online algorithms and benchmarking software that complements the 
one presented in Sec 3.1 (LPDNN) for non-deep-learning algorithms. The dataset has been open sourced at 
https://zenodo.org/record/5838437. 
 

For more details about the dataset, please refer to https://doi.org/10.1016/j.knosys.2022.109199  
 

3.2.2. Metrics  

https://zenodo.org/record/5838437
https://doi.org/10.1016/j.knosys.2022.109199


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

12 
 

The benchmark describes the behaviour of two different online algorithms with different parameter 
configurations and with different input instances (e.g., the specific details of the energy system and 
renewable energy production and demand fluctuation).   In more detail, both algorithms are characterized 
by a single changeable parameter that impacts the measured metrics: algorithm runtime, memory 
consumption and solution quality.  
For each record of the dataset, we collected the following information:   

 nParameter: an integer that represents the number of scenario/traces used by the algorithm (the 
configurable parameter).   

 Load (kW): a vector of 96 values representing the load observations sampled in 96 stages (every 15 
minutes over the course of a day).   

 RES (kW): a vector of 96 values representing the observations of available renewable production.   
  
During the execution of the different algorithm configurations, we measure the following metrics:  

 solution quality (k\euro): a real number representing the value of the solution, in practice a 
measure of the daily total energy cost. It is obtained as the sum over the entire time horizon (over 
96 stages) of all partial solutions.   

 runtime (sec): the time required for finding the solution with the algorithm. It is obtained as sum 
over the entire time horizon of all 96 partial running times.   

 memory consumption (MB): represents the RAM used by the algorithm on the machine where it 
was performed. It is an average of the memory used by the algorithm in 96 partial runs.  

 
The dataset is generated by executing both the algorithms on different problem instances and with different 
parameter configurations.   
 

Platform: All the runs for dataset creation have been performed on Intel Core i5 (3,1 GHz) machines with 16 
GB of RAM.  
 

3.2.3. Pros/Cons  

CONS  
The limitation of this dataset is mainly that we focused on a single HW architecture for analyzing the 
performance of both the algorithms with different parameter’s configurations.  
 

PROS  
This dataset represents the first prototype to test the vertical Matchmaking (MM) engine:   

 exhaustive grid-search exploration of the hyperparameter space   

 exhaustive validation of the vertical MM engine on different configurations.  
  

3.3. Benchmark complex, multi-parameter algorithms (Transprecision Computing 

Domain)  

As part of the 2nd release of the benchmarking results, benchmarks on complex, multi-parameter algorithms 

(Transprecision Computing Domain) have also been performed. 

 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

13 
 

3.3.1. Scope 

Transprecision computing1 is a paradigm that allows users to trade the energy associated with computation 

in exchange for a reduction in the quality of the computation results. In this complex domain, a typical target 

is Floating-point (FP) operations: transprecision techniques allow to specify the number of bits used to 

represent FP variables, and using a smaller number of bits decreases the precision, thus saving energy. To 

analytically calculate the impact of varying the number of bits on the computation results for programs with 

more than a couple of instructions is a crucial point. However, this relationship can be learned from data. 

To execute the transprecision benchmarks we used an open-source framework called Flex-Float2 that allows 

for the emulation of algorithms’ execution at different FP precisions and benchmarking software as explained 

in Sec 3.2. A comprehensive description of the framework is outside the scope of this document but can be 

found in the work of [Tagliavini et al., 2018]3. 

We consider numerical benchmarks where multiple FP variables take part in the computation of the result 

for a given input set, which includes a structured set of FP values (typically a vector or a matrix); the precision 

assigned to the different FP variables can be changed by running the benchmark under different 

configurations.  Assigning a precision means deciding the number of bits for the mantissa; the exponent 

dictates the extension of dynamic range and is set according to the actual types available on the target HW 

platform. We refer to [Borghesi et al., 2020]4 for additional details on the problem of running transprecision 

computing benchmarks while assigning different precisions to the FP variables. For our purposes, the 

important thing to understand are the differences between the transprecision domain and the energy 

domain described in Section 3.2: 

 In the transprecision domain we consider a set of four different algorithms, namely a subset of the 

applications studied in the context of transprecision computing, chosen because they represent 

distinct problems and capture different patterns of computation – in the energy domain case we 

considered two completely different algorithms. In particular, we considered the following four 

algorithms: 

o FWT, Fast Walsh Transform for real vectors, from the domain of advanced linear algebra; the 

number of FP variables is 2.  

o Saxpy, a generalized vector addition (basic linear algebra), with a number of FP variables 

equal to 3.  

o Convolution, the convolution of a matrix with a 11x11 kernel; 4 FP variables are needed by 

this algorithm. 

o Correlation, to compute the correlation matrix given as input, with a number of FP variables 

equal to 7. 

                                                           
1 Malossi, A. Cristiano I., et al. "The transprecision computing paradigm: Concept, design, and applications." 2018 
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018. 
2 https://github.com/oprecomp/flexfloat 
3 Tagliavini, Giuseppe, Andrea Marongiu, and Luca Benini. "Flexfloat: A software library for transprecision computing." 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39.1 (2018): 145-156.  
Tagliavini, Giuseppe, et al. "A transprecision floating-point platform for ultra-low power computing." 2018 Design, 
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018. 
4 Borghesi, Andrea, et al. "Combining learning and optimization for transprecision computing." Proceedings of the 17th 
ACM International Conference on Computing Frontiers. 2020. 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

14 
 

 While in the energy domain the algorithms’ behaviour was governed by a single hyperparameter (a 

different parameter for each of the two algorithms), in the transprecision case the hyperparameters 

involved correspond to the number of FP variables in the selected algorithms. 

o Different runs of the algorithms were done with different configurations of 

hyperparameters, that is the algorithms were run with different values of bits assigned to 

the FP variables (ranging from 4 to 53, bounds identified on the basis of domain knowledge). 

o The hyperparameter space was explored through Latin Hypercube Sampling. 

o For each hyperparameter configuration, 30 different runs were performed, each 

characterized by a different input instance (some of metrics describing the behaviour of the 

algorithm are impacted by the input – e.g., the initial vector or matrix – fed to the 

algorithms). 

 The benchmarks were run on three different hardware platforms, whereas in the energy domain 

case a single HW platform was used.  

o All hyperparameter configurations were run on the three HW devices.  

o The different HW platforms are the following: 

 A consumer-grade laptop 

 A virtual Machine (with dedicated usage) 

 A High-Performance Computing node  

3.3.2. Metrics 

During the execution of the different algorithm configurations, we measure the following metrics: 

 computation error (absolute number): a real number representing the "quality” of the solution, in 

practice the ration of the execution of the transprecision computing algorithms with the FP variables 

at reduced number of bits and the execution of the same algorithms with all the variables at 

maximum number of bits.  

 runtime (sec): the time required for finding the solution with the algorithm.   

 memory consumption (MB): represents the RAM used by the algorithm on the machine where it 

was performed. 

3.3.3. Pros/Cons 

CONS 

The key disadvantage of the transprecision benchmark lies in the complexity of the domain: it is notoriously 

difficult to learn any function trying to characterize the behavior of transprecision algorithms5, even when 

keeping the HW resources fixed. This problem is clearly only compounded when considering multiple HW 

platforms.  

PROS 

The main advantage of this suite of benchmarks (at least compared to the case of online algorithms for the 

energy domain) is that different HW platforms have actually been used, hence it is possible to directly 

observe the behavioral changes due to the impact of the hardware.  

                                                           
5 Borghesi, Andrea, et al. "Combining learning and optimization for transprecision computing." Proceedings of the 17th 
ACM International Conference on Computing Frontiers. 2020. 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

15 
 

4. Survey of external benchmarks 
In addition to the benchmarks performed internally under StairwAI, we also offer the results of a survey we 

conducted to investigate existing external benchmarking data, especially to understand whether it could be 

useful for the Vertical Matchmaking Engine (D6.5 in M30). We analyse and gather multiple datasets, which 

we present below: 

4.1. AI Benchmark 

4.1.1. Scope 

The AI Benchmark is an Android application designed to check the performance and the memory 

limitations associated with running AI and deep learning algorithms on mobile platforms. It consists of 

several computer vision tasks performed by neural networks that are running directly on Android 

devices. The considered networks represent the most popular and commonly used architectures that can 

be currently deployed on smartphones. 

Besides the Android version, a separate open-source AI Benchmark build for desktops was released in 

June 2019. It is targeted at evaluating AI performance of the common hardware platforms, including 

CPUs, GPUs and TPUs, and measures the inference and training speed for several key deep learning 

models. The benchmark is relying on the TensorFlow machine learning library and is distributed as a 

Python pip package that can be installed on any system running Windows, Linux or macOS. 

Reference Paper: https://arxiv.org/pdf/1810.01109.pdf, https://arxiv.org/pdf/1910.06663.pdf 

Website: https://ai-benchmark.com/index.html 

4.1.2. Metrics 

Supported Mobile Architectures: 

 Qualcomm: Snapdragon 845 (Hex. 685 + Adreno 630); Snapdragon 710 (Hexagon 685); Snapdragon 

670 (Hexagon 685); Snapdragon 855+ (Hex. 690 + Adreno 640); Snapdragon 855 (Hex. 690 + Adreno 

640); Snapdragon 730 (Hex. 688 + Adreno 618); Snapdragon 675 (Hex. 685 + Adreno 612); 

Snapdragon 665 (Hex. 686 + Adreno 610). 

 HiSilicon: Kirin 970 (NPU, Cambricon); Kirin 980 (NPU×2, Cambricon). 

 Samsung: Exynos 9810 (Mali-G72 MP18); Exynos 9610 (Mali-G72 MP3); Exynos 9609 (Mali-G72 MP3); 

Exynos 9825 (NPU + Mali-G76 MP12); Exynos 9820 (NPU + Mali-G76 MP12). 

 MediaTek: Helio P70 (APU 1.0 + Mali-G72 MP3); Helio P60 (APU 1.0 + Mali-G72 MP3); Helio P65 (Mali-

G52 MP2; Helio P90 (APU 2.0); Helio G90 (APU 1.0 + Mali-G76 MP4). 

Frameworks: 

 TensorFlow Mobile 

 TensorFlow Lite 

 Caffe2 

Deep Learning Tests: 

 Test Section 1: Image Classification, Model: MobileNet-V2, Inference modes: CPU (FP16/32) and 

NNAPI (INT8 + FP16), Image resolution: 224×224 px, Test time limit: 20 seconds. 

https://arxiv.org/pdf/1810.01109.pdf
https://arxiv.org/pdf/1910.06663.pdf
https://ai-benchmark.com/index.html


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

16 
 

 Test Section 2: Image Classification, Model: Inception-V3, Inference modes: CPU (FP16/32) and 

NNAPI (INT8 + FP16), Image resolution: 346X346 px, Test time limit: 30 seconds. 

 Test Section 3: Face Recognition, Model: Inception-ResNet-V1, Inference modes: CPU (INT8) and 

NNAPI (INT8 + FP16), Image resolution: 512X512 px, Test time limit: 30 seconds. 

 Test Section 4: Playing Atari, Model: LSTM, Inference modes: CPU (FP16/32), Image resolution: 

84X84 px, Test time limit: 20 seconds. 

 Test Section 5: Image Deblurring, Model: SRCNN 9-5-5, Inference modes: NNAPI (INT8 + FP16), 

Image resolution: 384X384 px, Test time limit: 30 seconds. 

 Test Section 6: Image Super-Resolution, Model: VGG-19 (VDSR), Inference modes: NNAPI (INT8 + 

FP16), Image resolution: 256X256 px, Test time limit: 30 seconds. 

 Test Section 7: Image Super-Resolution, Model: SRGAN, Inference modes: CPU (INT8 + FP16/32), 

Image resolution: 512X512 px, Test time limit: 40 seconds. 

 Test Section 8: Bokeh Simulation, Model: U-Net, Inference modes: CPU (FP16/32), Image resolution: 

128X128 px, Test time limit: 20 seconds. 

 Test Section 9: Image Segmentation, Model: ICNet, Inference modes: NNAPI (2 X FP32 models in 

parallel), Image resolution: 768X1152 px, Test time limit: 20 seconds. 

 Test Section 10: Image Enhancement, Model: DPED-ResNet, Inference modes: NNAPI (FP16 + FP32), 

Image resolution: 128X192 px, Test time limit: 20 seconds. 

 Test Section 11: Memory Test, Model: SRCNN 9-5-5, Inference modes: NNAPI (FP16), Image 

resolution: from 200X200 px to 2000X2000 px. 

Desktop GPU and CPUs architectures: 

 Tesla V100 SXM2 32Gb 

 Tesla V100 PCIE 32Gb 

 NVIDIA Quadro GV100 

 NVIDIA Quadro RTX 8000 

 GeForce RTX 2070 SUPER 

 NVIDIA TITAN Xp CE 

 AMD Radeon VII 

 GeForce RTX 2080 Max-Q 

 GeForce RTX 2060 Laptop 

 NVIDIA Tesla T4 

 Intel Xeon Gold 6148 

 Intel Xeon Gold 6248 

 AMD EPYC 7451 

Desktop GPU and CPUs datasets and tasks 

 MobileNet-V2 [classification]  

 Inception-V3 [classification] 

 Inception-V4 [classification]  

 Inception-ResNet-V2 [classification]  

 ResNet-V2-50 [classification]  

 ResNet-V2-152 [classification]  

 VGG-16 [classification]  



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

17 
 

 SRCNN9-5-5 [image-to-image mapping]  

 VGG-19 [image-to-image mapping] 

 ResNet-SRGAN [image-to-image mapping]  

 ResNet-DPED [image-to-image mapping]  

 U-Net [image-to-image mapping]  

 Nvidia-SPADE [image-to-image mapping]  

 ICNet [image segmentation] 

Scoring System  

AI Benchmark is measuring the performance of several test categories, including int-8, float-16, float-32, 

parallel, CPU (int-8 and float-16/32), memory tests, and tests measuring model initialization time. 

 The contribution of the test categories is as follows:  

 48%-float-16 tests;  

 24%-int-8 tests;  

 12%-CPU,float-16/32 tests;  

 6%-CPU,int-8 tests;  

 4%-float-32 tests;  

 3%-parallel execution of the models;  

 2%-initialization time, float models;  

 1%-initialization time, quantized models;  

The scores of each category are computed as a geometric mean of the test results belonging to this category. 

The computed L1 error is used to penalize the runtime of the corresponding networks running with NNAPI 

(an exponential penalty with exponent 1.5 is applied). 

4.1.3. Pros/Cons 

PROS 

• Heavy focus on computer vision 

• Multiple ML architecture: 

- MobileNet, Inception 

• Multiple precision for the same ML architecture: 

- FP16, INT8 

• State of Art Platforms/hardware: 

- AMD processors, NVIDIA accelerators, etc 

• Industry standard and unbiased evaluations: 

- Recognised by major companies and universities. 

• Regularly updated with new platforms 

CONS 

• Mobile Oriented: CPU and GPU results are not easy to compare with Mobile Inference. Still under 

development 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

18 
 

• Relies on TensorFlow Lite: the number of critical bugs and issues introduced in its new versions 

prevents from recommending it for any commercial projects or projects dealing with non-

standard AI models 
 

4.2. MLPerf 

4.2.1. Scope 

MLPerf aims to create a representative benchmark suite for ML that evaluates system performance to 

meet five high-level goals:  

1. Enable fair comparison of competing systems while still encouraging ML innovation.  

2. Accelerate ML progress through fair and useful measurement.  

3. Enforce reproducibility to ensure reliable results.  

4. Serve both the commercial and research communities.  

5. Keep benchmarking effort affordable so all can participate. 

Reference Paper: https://arxiv.org/abs/1911.02549 

Website: https://mlcommons.org/en/, section “Benchmarks”, subsections “Training” and “Inference” 

Training 

MLPerf Training does the following:  

1. Establish a comprehensive benchmark suite that covers diverse applications, DNN models, and 

optimizers.  

2. Create reference implementations of each benchmark to precisely define models and training 

procedures.  

3. Establish rules that ensure submissions are equivalent to these reference implementations and use 

equivalent hyperparameters.  

4. Establish timing rules to minimize the effects of stochasticity when comparing results. 

5. Make submission code open source so that the ML and systems communities can study and replicate 

the results. 

6. Form working groups to keep the benchmark suite up to date. 

 ML areas, including vision, language, recommendation, and reinforcement learning set of seven 

benchmarks. 

Inference 

ML inference systems range from deeply embedded devices to smartphones to data centres. They have a 

variety of real-world applications and many figures of merit, each requiring multiple performance metrics. 

The right metrics, reflecting production use cases, allow not just MLPerf but also publications to show how a 

practical ML system would perform. MLPerf Inference consists of four evaluation scenarios: single-stream, 

multistream, server, and offline. 

These scenarios represent many critical inference applications. MLPerf Inference provides a way to simulate 

the realistic behaviour of the inference system under test. 

https://arxiv.org/abs/1911.02549
https://mlcommons.org/en/


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

19 
 

4.2.2. Metrics 

Training 

Area Benchmark Dataset Quality Threshold Model 

Vision Image classification ImageNet 75.90% 

classification 

ResNet-50 v1.5 

Vision Image segmentation 

(medical) 

KiTS19 0.908 Mean DICE 

score 

3D U-Net 

Vision Object detection (light 

weight) 

Open Images 34.0% mAP RetinaNet 

Vision Object detection (heavy 

weight) 

COCO 0.377 Box min AP 

and 0.339 Mask 

min AP 

Mask R-CNN 

Language Speech recognition LibriSpeech 0.058 Word Error 

Rate 

RNN-T 

Language NLP Wikipedia 

2020/01/01 

0.72 Mask-LM 

accuracy 

BERT-large 

Commerce Recommendation 1TB Click Logs 0.8025 AUC DLRM 

Research Reinforcement learning Go 50% win rate vs. 
checkpoint 

Mini Go (based on 
Alpha Go paper) 

 

Training Supported Hardware 

 NC96ads_A100_v4 

 ND96amsr_A100_v4_n16 

 ND96amsr_A100_v4_n8 

 ESCN4A-E11 

 ESC8000A-E11-8xA100-PCIE-80GB-NVBridge         

 8_node_64_A100_PaddlePaddle         

 R750xax4A100-PCIE-80GB         

 PRIMERGY-RX2540M6-mxnet         

 8xR750xax4A100-PCIE-80GB         

 G492-ZD2         

 HPE-ProLiant-XL675d-Gen10-Plus_A100-SXM-80GB_hugectr         

 HLS-Gaudi2-PT         

 Dell Precision 7920 Tower with 2x A5000 using MxNet 22.04         

 Lenovo ThinkSystem SR670 V2 Server with 4x 40GB SXM4 A100         

 Lenovo ThinkSystem SR670 V2 Server with 8x 80GB PCIe A100         

 dgxa100_ngc22.04_merlin_hugectr         

 AS-4124GS-TNR         



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

20 
 

 G5500V6x8xA30 

 1-node-SPR-pytorch         

 16-nodes-SPR-pytorch         

 dgxh100_n4_preview         

 NF5468M6J 
 

Training HPC 

Area Benchmark Dataset Quality Threshold Model 

Scientific Climate segmentation CAM5+TECA 

simulation 

IOU 0.82 DeepCAM 

Scientific Cosmology parameter 

prediction 

CosmoFlow N-

body 

simulation 

Mean average 

error 0.124 

CosmoFlow 

Scientific Quantum molecular 

modeling 

Open Catalyst 

2020 (OC20) 

Forces mean 

absolute error 

0.036 

DimeNet++ 

 

Time-to-Train Performance Metric 

To address the ML-benchmarking challenges of system optimization and scale, MLPerf performance metric 

is the time to train to a defined quality target.  

It incorporates both system speed and accuracy and is most relevant to ML practitioners. As an end-to end 

metric, it also captures the auxiliary operations necessary for training such models, including data-pipeline 

and accuracy calculations. The metric’s generality enables application to reinforcement learning, 

unsupervised learning, generative adversarial networks, and other training schemes. 

Each benchmark measures the wall clock time required to train a model on the specified dataset to achieve 

the specified quality target. To account for the substantial variance in ML training times, final results are 

obtained by measuring the benchmark a benchmark-specific number of times, discarding the lowest and 

highest results, and averaging the remaining results. Even the multiple result average is not sufficient to 

eliminate all variance. Imaging benchmark results are very roughly +/- 2.5% and other benchmarks are very 

roughly +/- 5%. 

For non-HPC training, results that converged in fewer epochs than the reference implementation run with 

the same hyperparameters were normalized to the expected number of epochs. 

Inference 

MLPerf defines model-quality targets. We established per-model and scenario targets for inference latency 

and model quality. The latency bounds and target qualities are based on input gathered from ML-system end 

users and ML practitioners. As MLPerf improves these parameters in accordance with industry needs, the 

broader research community can track them to stay relevant. 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

21 
 

Inference Datacenter 

Area Benchmark Dataset Quality Threshold Model 

Vision Image classification ImageNet 

(224x224) 

99% of FP32 (76.46%) Resnet50-
v1.5 

Vision Object detection OpenImages 

(800x800) 

99% of FP32 (0.20 mAP) Retinanet 

Vision Medical image 

segmentation 

KITS 2019 

(602x512x512) 

99% of FP32 and 99.9% of 

FP32 (0.86330 mean DICE 

score) 

3D UNET 

Speech Speech-to-text Librispeech dev-

clean (samples < 15 

seconds) 

99% of FP32 (1 - WER, where 

WER=7.452253714852645%) 

RNNT 

Language Language 

processing 

SQuAD v1.1 

(max_seq_len=384) 

99% of FP32 and 99.9% of 

FP32 (f1_score=90.874%) 

BERT-large 

Commerce Recommendation 1TB Click Logs 99% of FP32 and 99.9% of 

FP32 (AUC=80.25%) 

DLRM 

Metrics: 

A. queries/s 

B. samples/s 

C. Accuracy 

D. System Power (W) 

Inference Mobile 

Area Benchmark Dataset Quality Threshold Model 

Vision Image classification ImageNet 98% of FP32 (Top1: 

76.19%) 

MobileNetEdgeTPU 

Vision Object detection MS-COCO 2017 95% of FP32 (mAp: 0.285) MobileDETs 

Vision Segmentation ADE20K (32 

classes, 512x512) 

97% of FP32 (32-class 

mIOU: 54.8) 

DeepLabV3+ 
(MobileNetV2) 

Vision Segmentation, 

MOSAIC 

ADE20K (32 

classes, 512x512) 

96% of FP32 (32-class 

mIOU: 59.8) 

MOSAIC 

Language Language 

processing 

SQUAD 1.1 93% of FP32 (F1 score: 

90.5) 

Mobile-BERT 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

22 
 

Metrics: 

A. frames/s 

B. latency in ms 

4.2.3. Pros/Cons 

PROS 

The framework offers different sorts of benchmarks for comparison/innovation: 

 Close: Same original model on HW or SW framework  

 Open: - Allow to innovate with networks and frameworks  

 Power: - Allows to obtain system power measurements  

 Scenarios: - Different streams: single, multi, server, offline  

 Platforms: - Many HW platforms and SW frameworks 

CONS 

 Only few tasks  

 Only few models 

 No memory usage  

 No system usage 

 No pre- or post-processing 

 

4.3. AIBench 

4.3.1. Scope 

AIBench provides a scalable and comprehensive data-center AI benchmark suite. In total, it includes 12 micro 

benchmarks, 16 component benchmarks, covering 16 AI problem domains: image classification, image 

generation, text-to-text translation, image-to-text, image-to-image, speech-to-text, face embedding, 3D face 

recognition, object detection, video prediction, image compression, recommendation, 3D object 

reconstruction, text summarization, spatial transformer, learning to rank, and two end-to-end application. AI 

benchmarks:  

- DCMix —a datacenter AI application combination mixed with AI workloads  

- E-commerce AI—an end-to-end business AI benchmark. 

Reference Paper: https://arxiv.org/pdf/2004.14690, http://www.benchcouncil.org/aibench/file/AIBench-

Bench18.pdf, https://www.benchcouncil.org/file/Cluster_2021_hpcai_camera.pdf  

Website: https://www.benchcouncil.org/aibench/index.html, section “AIBench Training” and “AIBench 

Inference” 

 

 

 

https://arxiv.org/pdf/2004.14690
http://www.benchcouncil.org/aibench/file/AIBench-Bench18.pdf
http://www.benchcouncil.org/aibench/file/AIBench-Bench18.pdf
https://www.benchcouncil.org/file/Cluster_2021_hpcai_camera.pdf
https://www.benchcouncil.org/aibench/index.html


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

23 
 

4.3.2. Metrics 

AI Tasks 

• Image generation uses WGAN algorithms and uses LSUN dataset as data input to generate image 

data.  

• Text-to-Text Translation uses recurrent neural networks and takes WMTEnglish-German as data 

input to translate text data.  

• Image-to-Text uses Neural Image Caption model and takes Microsoft COCO dataset as input to 

describe image using text.  

• Image-to-Image uses the cycleGAN algorithm and takes Cityscapes dataset as input to transform the 

image to another image.  

• Speech-to-Text uses the DeepSpeech2 algorithm and takes Librispeech dataset as input to recognize 

the speech data.  

• Face embedding uses the FaceNet algorithm and takes the LFW (Labeled Faces in the Wild) dataset 

or VGGFace2 as input to convert image to an embedding vector.  

• 3Dface recognition uses 3D face modes to recognize 3D information within images. The input data 

includes 77,715 samples from 253 face IDs, which is published on the BenchCouncil web site.  

• Object detection uses the Faster R-CNN algorithm and takes Microsoft COCO dataset as input to 

detect objects in images.  

• Recommendation uses collaborative filtering algorithm and takes MovieLens dataset as input to 

provide recommendations.  

• Video prediction uses motion-focused predictive models and takes Robot pushing dataset as input 

to predict video frames.  

• Image compression uses recurrent neural networks and takes ImageNet dataset as input to 

compression images. 

• 3D object reconstruction uses a convolutional encoder-decoder network and takes ShapeNet 

Dataset as input to reconstruct 3D object.  

• Text summarization uses sequence-to-sequence model and takes Gigaword dataset as input to 

generate summary description for text.  

• Spatial transformer uses spatial transformer networks and takes MNIST dataset as input to make 

spatial transformations.  

• Learning to Rank uses ranking distillation algorithm and uses Gowalla dataset to generate ranking 

scores. 

Metrics 

- Wall Clock Time 

- Energy consumption of running a benchmark 

- Accuracy 

Provides both training and inference benchmarks.  

The training metrics are the wall clock time to train the specific epochs, the wall clock time to train a 

model achieving a target accuracy, and the energy consumption to train a model achieving a target 

accuracy.  

The inference metrics are the wall clock time, accuracy, and energy consumption.  



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

24 
 

Additionally, the performance numbers are reported on the BenchCouncil web site 

(http://www.benchcouncil.org/numbers.html), to measure the training and inference speeds of different 

hardware platforms, including multiple types of NVDIA GPUs, Intel CPUs, AI accelerator chips, and to 

measure the performance of different software stacks, including TensorFlow, PyTorch, etc. 

4.3.3. Pros/Cons 

PROS 

- Wide variety of data types and data sources are covered, including text, images, street scenes, 

audios, videos, etc.  

- Not only based on mainstream deep learning frameworks like TensorFlow and PyTorch, but also 

based on traditional programming model like Pthreads. 

- Provides Training, Inference, Micro and Synthetics Benchmarks across Datacenter, HPC, IoT, and 

Edge. 

CONS 

- Last update in 2021 

- Lacking benchmark results on latest Mobile and CPU/GPUs architectures 

 

4.4. OpenML CC-18 

4.4.1. Scope 

Seamlessly integrated into the OpenML platform, this benchmark suites standardize the setup, execution, 

analysis, and reporting of benchmarks: 

 All datasets are uniformly formatted in standardized data formats. 

 They can be easily downloaded programmatically through APIs and client libraries. 

 They come with machine-readable meta-information, such as the occurrence of missing values, 

to train algorithms correctly. 

 Standardized train-test splits are provided to ensure that results can be objectively compared. 

 Results can be shared in a reproducible way through the APIs. 

 Results from other users can be easily downloaded and reused. 

Reference Paper: https://arxiv.org/pdf/1708.03731.pdf  

Website: https://www.openml.org/search?type=benchmark&sort=tasks_included&study_type=task,  

Benchmarking Doc: https://docs.openml.org/benchmark/  

4.4.2. Metrics 

The OpenML-CC18 contains all verified and publicly licenced OpenML datasets until mid-2018 that satisfy a 

large set of clear requirements for thorough yet practical benchmarking:  

 The number of observations is between 500 and 100000 to focus on medium-sized datasets that can 

be used to train models on almost any computing hardware.  

https://arxiv.org/pdf/1708.03731.pdf
https://www.openml.org/search?type=benchmark&sort=tasks_included&study_type=task
https://docs.openml.org/benchmark/


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

25 
 

 The dataset has less than 5000 features, counted after one-hot-encoding categorical features (which 

is the most frequent way to deal with categorical variables), to avoid most memory issues. 

 The target attribute has at least two classes, with no class of less than 20 observations. This ensures 

sufficient samples per class per fold when running 10-fold cross-validation experiments.  

 The ratio of the minority and majority class is above 0.05 (to eliminate highly imbalanced datasets 

which require special treatment for both algorithms and evaluation measures).  

 The dataset is not sparse because not all machine learning models can handle them gracefully, this 

constraint facilitates our goal of wide applicability.  

 The dataset does not require taking time dependency between samples into account, e.g., time series 

or data streams, as this is often not implemented in standard machine learning libraries. Removed 

datasets where each sample constitutes a single data stream.  

 The dataset does not require grouped sampling. Such datasets would contain multiple data points 

for one subject and require that all data points for a subject are put into the same data split for 

evaluation. 

4.4.3. Pros/Cons 

PROS 

• Easy creation of benchmarks  

• Permanence and provenance: Because benchmarking suites are its own entity on OpenML, it is clear 

who created them (provenance).  

• Community of practice: Curated benchmark suites allow scientists to thoroughly benchmark their 

machine learning methods without having to worry about finding and selecting datasets for their 

benchmarks.  

• Building on existing suites: Scientists can extend, subset, or adapt existing benchmarking suites to 

correct issues, raise the bar, or run personalized benchmarks. 

• Reproducibility of benchmarks: Based on machine-readable OpenML tasks, with detailed 

instructions for evaluation procedures and train-test splits, shared results are comparable and 

reproducible.  

CONS 

 Overfitting: overfitting on fixed suites is increasingly likely.  

 Computational issues: focused on mid-size datasets, some larger ones still incurred too high 

computational load, so some researchers have used subsets of the OpenML-CC18 in their work. 

 Breadth of current benchmarking suites: researchers are interested in benchmarking larger (deep 

learning) models on larger datasets from many domains (including language and vision).  

 Specification of resource constraints: the task and suite specifications do not yet allow for 

constraints on resources, e.g., memory or time limits.  

 

 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

26 
 

4.5. DataPerf 

4.5.1. Scope 

DataPerf focuses on creating better datasets than creating better models regarding the breadth, difficulty, 

and faithfulness of datasets employed in ML tasks.  It is designed to improve the training and test data for 

model benchmarking and, consequently, ML models. The DataPerf benchmark suite is a collection of tasks, 

metrics and rules to understand the scope, quality and limitations of datasets. It measures the quality of 

training and test datasets and the quality of algorithms for constructing such datasets. Benchmark examples 

include data debugging, data valuation, training- and test-set creation, and selection algorithms. Currently, 

speech and vision benchmarks are designed to evaluate dataset creation and selection.  

DataPerf has the following goals: 

 Focus research and development on improving ML dataset quality. 

 Improve ML training datasets to increase accuracy and/or reduce data required to train. 

 Improve ML test datasets to drive ML solution fidelity and reliability. 

 Motivate datasets that increase representation and decrease bias. 

 Drive development of better techniques and tools for creating and optimizing datasets. 

 Provide consistent metrics for researchers and commercial developers. 

 Enforce replicability to ensure reliable results. 

 Keep benchmarking effort affordable so all can participate. 

 

Reference Paper: https://arxiv.org/pdf/2207.10062  

Website: https://dataperf.org/  

4.5.2. Metrics 

The DataPerf suite includes the benchmark types listed below. Each benchmark type uses a different metric, 

though all in principle either maximize the efficacy of a training set or the breadth/difficulty of a test set. 

DataPerf Benchmark type 

Benchmark Type Benchmark Method Benchmark Metric 

Training Set Creation Replace given training set 

with novel training set 

Accuracy of models 

trained on novel training 

set 

Test Set Creation Select a fixed number of 

additional test-data items 

from the supplemental set 

OpenI Number of 

submitted test data items 

incorrectly labeled by 

models and correctly 

labeled by humans, where 

credit for each item is 

divided by number of 

https://arxiv.org/pdf/2207.10062
https://dataperf.org/


 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

27 
 

submissions containing 

that item 

Selection Algorithm Select a fixed number of 

additional test-data items 

from the supplemental set 

Number of submitted test 

data items incorrectly 

labeled by models and 

correctly labeled by 

humans, where credit for 

each item is divided by 

number of submissions 

containing that item 

Debugging Algorithm Identify labeling errors in 

version of training set that 

contains some corrupted 

labels 

Accuracy of trained 

models after identified 

labels are corrected 

Slicing Algorithm Divide training set into 

semantically coherent slices 

Fraction of data assigned 

to the correct slice 

Valuation Algorithm Estimate accuracy 

improvement from training 

on set A to training on set A 

+ set B (where B lacks labels 

at time of estimate) 

Absolute difference 

between predicted 

accuracy and actual 

accuracy 

 

4.5.3. Pros/Cons 

PROS 

 Focused on Data 

 Improved Data Quality 

CONS 

 Under Development, few results available 

 Mainly focused on accuracy, independently of the hardware 

 No HW metrics available 

 
 

 

 

 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

28 
 

5. Discussion and integration 

5.1. Benchmarks discussion 

Multiple insights could be gained from the survey of available datasets and benchmarks presented in the 

previous sections. In particular, we will consider the relation of the benchmarks with the final goal of the 

WP6, which is to build a vertical matchmaking component capable of matching available hardware 

resources and AI algorithms while respecting user-specified constraints. One of the critical components of 

the vertical engine is a Machine Learning model, which learns the relation between the behaviour of the 

algorithm (for instance, represented as time-to-solution, runtime, memory consumption, power 

consumption, and other similar metrics) and the HW platform used to run the algorithm. 

From the point of view of the vertical matchmaking engine, most of the value of the benchmarking data lies 

in the possibility of characterizing the behaviour of AI algorithms running across different hardware 

platforms and under different configurations. The main key to be drawn is to understand whether the 

deployment of the algorithm can be maximized by being deployed on a specific platform or configuration. 

The vertical matchmaker will then use this information to support the user in selecting the optimal hardware 

resources for a given task, i.e., a specific algorithm, and possibly to find the optimal hyperparameters’ 

configuration. 

The benchmarks provided by StairwAI, e.g., LPDNN's dataset, have into consideration the support of 

multiple platforms and configurations, e.g., inference engine, model version, model size, data type, etc., 

addressing those vertical matchmaking engine’s requirements explained above. Thus, the first version of 

vertical matchmaking has already been trained on these datasets, which will be further described in D6.5. 

However, this information is not always explicitly reflected in the external benchmarking datasets, which 

are not always created to characterize the algorithms’ behaviour, i.e., they tend to either collect information 

about a few algorithms executed on multiple platforms or a modest set of algorithm’s configurations on a 

single device. This does not necessarily make these data worthless, as helpful information can be extracted, 

especially for transfer learning purposes. 

It can also be noticed that there is no general unified format employed to collect data and perform the 

benchmarks. This lack of a standard hinders the development of a vertical matchmaking engine over 

different domains, as an ad-hoc technique to process the benchmarking data would need to be implemented 

for each case. A standard and unified format could be highly beneficial in this regard – it could be as simple 

as deciding a common format by which the collected data should be organized. For instance, the first step 

could consist in creating a companion meta-data descriptor containing the information about the 

benchmarking data and easily readable by a machine for automated processing. We further develop this 

concept in Section 5.2.2. 

Another observation that can be made is the fact that existing benchmarking datasets cover a wide range of 

different target metrics, that is, the metrics used to characterize the algorithms' behaviour and measured 

during the execution on a specific HW platform. On the one hand, the variety of target metrics is a boon as 

it allows for studying an algorithm's behaviour under different aspects. On the other hand, this might limit 

the possibility of comparing different algorithms and/or different HW devices, as the comparison is difficult 

when the benchmarks measure different things. Further, fairness can be at stake if the benchmarking process 

across the various frameworks is not performed homogeneously. 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

29 
 

Overall, and after careful consideration, we have realized that it is extremely difficult to use external 

benchmarks in their current form to train the vertical matchmaking engine since these benchmarks, while 

very informative, were not explicitly devised to support the downstream task that we are considering in this 

work package. Most of the benchmarks only contain information about the runtime (and not always). Thus, 

it is challenging to properly characterize the algorithms' behaviour in other aspects, strongly limiting the 

benefits of using the vertical matchmaking engine. Moreover, although data from several platforms and 

algorithms are provided, the benchmarks do not explore the configuration space in an exhaustive way, which 

is an aspect essential to building data-driven models to fit the algorithms' behaviour. Finally, since no general 

unified format is employed, an ad-hoc technique to process the benchmarking data would need to be 

implemented for each case, which would require an unfeasible amount of work for this project.  

For these reasons, we have decided to rely entirely on internally generated benchmarks - which provide a 

richer configuration space and address the heterogeneity of HW devices and configurations - as inputs for 

the vertical matchmaking engine as will be extensively presented in D6.5. 

 

5.2. Benchmark Integration  

As part of the 2nd release of the benchmarking results, the benchmark integration has been widely addressed. 

In this Section, we introduce the StairwAI’s benchmark services and how they align with the AI-on-demand. 

Figure 1 illustrates, from a user’s perspective, the benchmarking workflow: 

A. The user gets an algorithm that is fetched from the AI-on-demand. 

B. The fetched algorithm is benchmarked with the Benchmark as a Service (aaS). 

C. The benchmark is stored in the Data exchange Service. 

D. The Vertical Matchmaking Engine uses the Data Exchange Service to train the engine on the available 

benchmark data. 

E. The user may specify his/her constrains to the Vertical Matchmaking Engine and gets a supportive 

recommendation (prediction) for a given unbenchmarked algorithm or platform. 

F. The user push benchmark results to the AI-on-demand. 

In the following sub-sections, we ellaborate on each of the presented components. 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

30 
 

 

Figure 1 StairwAI's Benchmarking 

 

5.2.1. Benchmark as a Service  

In D6.2, the Benchmark as-a-Service’s (BaaS) design was introduced in collaboration with WP2 for the 

broader interoperability with the AI-on-demand platform as shown in Figure 1. StairwAI aims to enhance the 

AI-on-demand by adding a service layer that provides, among others, a Benchmark aaS. The Benchmark aaS 

provides a service layer wrapping and also extending the Benchmarking Software framework (D6.2), 

alleviating some of the Benchmarking software framework dependencies and be able to benchmark any AI 

model. Figure 2 shows how a user can interact with the Benchmark aaS to benchmark an AI model on a 

variety of platforms, using different configurations. 

For more details about the benchmark aaS, please refer to D6.2 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

31 
 

 

Figure 2 Benchmark aaS 

5.2.2. Metadata describing the benchmarking output 

A fundamental step to obtain reusable and understandable benchmarks, as discussed in Sec 5.1, is to endow 

them with all the necessary meta-data, such as the specifics of the executed AI asset, the HW device where 

it was deployed, the value of the hyperparameters affecting the behaviour, the metrics that have been 

measured, etc.  

Thus, each of the benchmarks provided within StairwAI is accompanied by a JSON-like file descriptor. 

Assuming that we have run an AI asset <asset_name>, using the HW platform <HW>, the name of the 

descriptor will be  <asset_name>_<HW>.json.  

An example of the descriptor is provided in the Appendix. 

5.2.3. Data exchange Service  

A data exchange service has been created to handle and struct the storage of the benchmarks and bridge the 

benchmarking service described in Sec. 5.2.1 and the vertical matchmaking service described in D6.5. On the 

one hand, the service enables any provider to upload data via an API and store the data in a structured 

manner. On the other hand, the vertical matchmaking component interfaces with this service, consuming 

the benchmark data to train its ML-based engine. 

The data exchange service allows the decoupling of the services as mentioned above, as users may want to 

benchmark multiple algorithms (or the same algorithm on multiple HW platforms) without having to perform 

matchmaking. Likewise, the vertical matchmaking service gathers the datasets, which are the outcome of the 

benchmarking service (formatted as described by the metadata, see the Appendix), without such performing 

the benchmarking itself. 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

32 
 

The service is built as a Python Flask web service6, and it is deployed as a Docker container. The benchmark 

providers can supply their data to the service through its REST APIs (POST actions). Similarly, consumers can 

access the data through the APIs (GET actions). More in detail, the service handles two types of files that are 

required by the vertical matchmaking component to use a benchmark effectively: a configuration file (JSON), 

as described in the Appendix, and the benchmark dataset (CSV) that follows such description. Both are 

expected to be provided for each algorithm run on a specific hardware platform.  

In addition to the files required by the vertical matchmaking component, the data exchange service also 

handles a reference table with details about the hardware platforms (CSV). The table can be retrieved via a 

GET action and updated via a POST action (reuploading the whole file). 

5.2.3.1. APIs 

Next, we describe the API for the data exchange service: 

Configs 

 /configs (GET): get list of (algorithm, hw) couples for which configs are available. 

 /configs/<algorithm>/<hw> (GET): retrieve the config (JSON) relative the the (algorithm, 

hw) couple. 

 /configs/<algorithm>/<hw> (POST): upload/overwrite the config (JSON) relative the the 

(algorithm, hw) couple.  

o Data must be passed by the file field. 

 /configs/<algorithm>/<hw> (DELETE): delete the config (JSON) relative the the 

(algorithm, hw) couple. 

Datasets 

 /datasets (GET): get list of (algorithm, hw) couples for which datasets are available. 

 /datasets/<algorithm>/<hw> (GET): retrieve the dataset (CSV) relative the the 

(algorithm, hw) couple. 

 /dataset/<algorithm>/<hw> (POST): upload/overwrite the dataset (CSV) relative the the 

(algorithm, hw) couple.  

o Data must be passed by the file field. 

 /datasets/<algorithm>/<hw> (DELETE): delete the dataset (CSV) relative the the 

(algorithm, hw) couple. 

HW info 

 /hw_info (GET): retrieve the CSV containing information about hardware platforms. 

 /hw_info (POST): upload/overwrite the CSV containing information about hardware platforms.  

o Data must be passed by the file field. 

 /hw_info (DELETE): remove the CSV containing information about hardware platforms. 

 

 

                                                           
6 https://flask.palletsprojects.com/en/2.3.x/ 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

33 
 

5.2.4. Alignment with AI-on-demand platform 

As planned for WP6, new benchmarks have been generated by the StairwAI’s partners. The benchmarks have 

been generated according to the service described in Sec. 5.2.1 and made available to the StairwAI platform 

through the data-sharing service described in Sec. 5.2.2 and 5.2.3. The key aspect of these internal 

benchmarks is that they were generated according to the format agreed upon with other partners of the 

work package to create datasets that could be fed to the vertical matchmaking component, described in 

deliverable 6.5. Each dataset is accompanied by a metadata descriptor, following the format reported in 

Appendix 7.1. This allows for seamless integration with the vertical matchmaking service.  

During the course of this work package, StairwAI has also participated in an AI4Europe workshop on 

benchmarking. The main goal of this meeting was to align the efforts for benchmarking across multiple ICT49 

projects and the AI-on-demand platform. During the workshop, multiple benchmarking frameworks and 

benchmark results were presented. The benchmark frameworks' alignment was less critical as they focused 

on different AI problems, e.g., training or inference, cloud or edge. Nonetheless, and as concluded in Section 

5.1, it is fairly important to align the benchmark results on some established standard format to have a clear 

common understanding and smooth transition across different AI Tasks. Thus, the format provided in the 

Appendix for StairwAI’s benchmarks is a first step towards this goal, which should be scaled and agreed upon 

with the broader AI-on-demand community. 

To be able to use the benchmarks from the AI-on-demand platform for the vertical matchmaking engine, 

they need to have a sufficiently standardized format that allows users to submit a diverse set of AI assets 

while making them reusable. Since, to date, there is not a clear format nor matured API to use those 

benchmarks, it has not been possible to validate/extend the vertical matchmaking further with such datasets. 

Nonetheless, the effort undertaken within this work package allowed the identification of a set of guidelines 

for a common benchmarking strategy, with an explicit focus on the need to obtain shared metadata 

descriptors for the outcome of the benchmarking process. These guidelines will be shared with the AI4Europe 

partners and will guide the development of the general benchmarking strategy. 

Further, during the rest of the StairwAI project and particularly within WP2, StairwAI’s partners will push on 

the integration with the AI-on-Demand by sharing the internal benchmark datasets with the broader AI-on-

demand community through the AI-on-demand API. 

 

 

 

 

 

 

 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

34 
 

6. Conclusion and future work 
This document has presented the 2nd version of the Benchmark results proposed within WP6 Task 6.2 of the 

StairwAI project. The document has described the benchmark results obtained using StairwAI’s frameworks 

(D6.2) across multiple heterogeneous platforms, providing a rich and heterogenous dataset (3000+ 

configurations) used to train the vertical matchmaking engine. Besides, we have provided a survey of external 

benchmarks where we analyse the characteristics and feasibility of adding external data to train the vertical 

matchmaking engine. 

In addition, we have identified and proposed a common format to describe and standardize the output of 

the benchmarking results to make them reusable by the vertical matchmaking engine. Further, a data 

exchange service (deployed in the StairwAI platform) has been created to gather the benchmark data and 

bridge the benchmarking service and the vertical matchmaking service. 

Finally, this document defines a clear set of APIs and guidelines to allow the integration of the benchmarks 

(and their reusability) in the AI-on-demand platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

35 
 

7. Appendix 
7.1. Metadata example 
The following is a metadata descriptor, which can be expanded according to specific needs. This sketch 

contains the kernel of information that must be available to effectively run and describe a benchmark (a 

crucial aspect for reproducibility).  

Metadata descriptor (JSON) 

{ 

  "name":"algo1", 

  "HW_ID":"hw1", 

  "HW_price":null, 

  "inputs":[ 

    { 

      "ID":"input_0", 

      "description":null, 

      "type":"str", 

      "LB":null, 

      "UB":null 

    }, 

    { 

      "ID":"input_1", 

      "description":null, 

      "type":"float", 

      "LB":null, 

      "UB":null 

    } 

  ], 

  "hyperparams":[ 

    { 

      "ID":"hyperparam_0", 

      "description":null, 

      "type":"float", 

      "LB":null, 

      "UB":null 

    }, 

    { 

      "ID":"hyperparam_1", 

      "description":null, 

      "type":"bin", 

      "LB":null, 

      "UB":null 

    }, 

    { 

      "ID":"hyperparam_2", 

      "description":null, 

      "type":"int", 

      "LB":null, 

      "UB":null 

    } 

  ], 

  "targets":[ 

    { 

      "ID":"time", 

      "description":null, 

      "LB":null, 

      "UB":null 

    }, 

    { 

      "ID":"memory", 

      "description":null, 



 
D6.4 Benchmark Results-2nd version                                    H2020 GA 101017142    

 

This project has received funding from the European Union’s Horizon 2020 research and innovation  
programme under grant agreement No 101017142 

36 
 

      "LB":null, 

      "UB":null 

    } 

  ] 

} 

Description of the fields: 

 name: name of the algorithm. 

 HW_ID: name of the hardware platform. 

 HW_price: default price for the hardware platform (optional). 

 Structure of the inputs, hyperparameters and targets sections:  
o ID: ID of the input/hyperparameter/target. 
o type: type of the input/hyperparameter: “int”, “float”, “bin’ or “str” (look at the dataset 

example for more); not present for targets, which are assumed to be of type “float”. 
o description: description of the input/hyperparameter/target (to be shown to the user for 

guidance, optional). 
o UB and LB: upper bound and lower bound (it's extracted from the dataset if not specified). 

The whole “inputs” section is optional: if present, the configuration file is intended as describing an input-

dependent case; if not present, an input-independent case. 

 

Dataset (CSV) 

 The dataset, following the JSON description, is expected to have at least two types of columns, 

hyperparameters and targets (metrics), where each row represents a measurement: the algorithm is run 

with the specified hyperparameters' values, resulting in the reported values for the targets.  

In the input-dependent case ulterior columns are expected to represent input variables, with the values 

that resulted in the measurement in each row. 

Dataset example (CSV) related to shown JSON:  

input_0,input_1,hyperparam_0,hyperparam_1,hyperparam_2,time,memory  

a,1.12,2.33,1,32,120.34,1022.56  

b,4.23,3.55,0,74,93.78,987.85  

c,7.46,2.22,1,22,44.13,1328.77 

Columns corresponding to inputs and hyperparameters are expected to be of the type declared in the 

configuration file:  

 integers if the type is int;  

 any numerical value if the type is float;  

 0s and 1s if the type is bin; 

 strings if the type is str. 

Targets are assumed to be always of type float (i.e., a continuous numerical). 

 

 


